MAP Estimation of Semi-Metric MRFs via Hierarchical Graph Cuts

نویسندگان

  • M. Pawan Kumar
  • Daphne Koller
چکیده

We consider the task of obtaining the maximum a posteriori estimate of discrete pairwise random fields with arbitrary unary potentials and semimetric pairwise potentials. For this problem, we propose an accurate hierarchical move making strategy where each move is computed efficiently by solving an st-MINCUT problem. Unlike previous move making approaches, e.g. the widely used α-expansion algorithm, our method obtains the guarantees of the standard linear programming (LP) relaxation for the important special case of metric labeling. Unlike the existing LP relaxation solvers, e.g. interior-point algorithms or tree-reweighted message passing, our method is significantly faster as it uses only the efficient st-MINCUT algorithm in its design. Using both synthetic and real data experiments, we show that our technique outperforms several commonly used algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi - Resolution Graph Cuts for Stereo - Motion Estimation by Joshua A . Worby

Multi-Resolution Graph Cuts for Stereo-Motion Estimation Joshua A. Worby Master of Applied Science Graduate Department of The Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto 2007 This thesis presents the design and implementation of a multi-resolution graph cuts (MRGC) for stereo-motion framework that produces dense disparity maps. Both stereo and mo...

متن کامل

Depth Estimation using Modified Cost Function for Occlusion Handling

The paper presents a novel approach to occlusion handling problem in depth estimation using three views. A solution based on modification of similarity cost function is proposed. During the depth estimation via optimization algorithms like Graph Cut similarity metric is constantly updated so that only non-occluded fragments in side views are considered. At each iteration of the algorithm non-oc...

متن کامل

Solving Markov Random Fields with Spectral Relaxation

Markov Random Fields (MRFs) are used in a large array of computer vision applications. Finding the Maximum Aposteriori (MAP) solution of an MRF is in general intractable, and one has to resort to approximate solutions, such as Belief Propagation, Graph Cuts, or more recently, approaches based on quadratic programming. We propose a novel type of approximation, Spectral relaxation to Quadratic Pr...

متن کامل

Solving Multilabel MRFs using Incremental α-Expansion on the GPUs

Many vision problems map to the minimization of an energy function over a discrete MRF. Fast performance is needed if the energy minimization is one step in a control loop. In this paper, we present the incremental α-expansion algorithm for high-performance multilabel MRF optimization on the GPU. Our algorithm utilizes the grid structure of the MRFs for good parallelism on the GPU. We improve t...

متن کامل

Bethe Bounds and Approximating the Global Optimum

Inference in general Markov random fields (MRFs) is NP-hard, though identifying the maximum a posteriori (MAP) configuration of pairwise MRFs with submodular cost functions is efficiently solvable using graph cuts. Marginal inference, however, even for this restricted class, is in #P. We prove new formulations of derivatives of the Bethe free energy, provide bounds on the derivatives and bracke...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009