MAP Estimation of Semi-Metric MRFs via Hierarchical Graph Cuts
نویسندگان
چکیده
We consider the task of obtaining the maximum a posteriori estimate of discrete pairwise random fields with arbitrary unary potentials and semimetric pairwise potentials. For this problem, we propose an accurate hierarchical move making strategy where each move is computed efficiently by solving an st-MINCUT problem. Unlike previous move making approaches, e.g. the widely used α-expansion algorithm, our method obtains the guarantees of the standard linear programming (LP) relaxation for the important special case of metric labeling. Unlike the existing LP relaxation solvers, e.g. interior-point algorithms or tree-reweighted message passing, our method is significantly faster as it uses only the efficient st-MINCUT algorithm in its design. Using both synthetic and real data experiments, we show that our technique outperforms several commonly used algorithms.
منابع مشابه
Multi - Resolution Graph Cuts for Stereo - Motion Estimation by Joshua A . Worby
Multi-Resolution Graph Cuts for Stereo-Motion Estimation Joshua A. Worby Master of Applied Science Graduate Department of The Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto 2007 This thesis presents the design and implementation of a multi-resolution graph cuts (MRGC) for stereo-motion framework that produces dense disparity maps. Both stereo and mo...
متن کاملDepth Estimation using Modified Cost Function for Occlusion Handling
The paper presents a novel approach to occlusion handling problem in depth estimation using three views. A solution based on modification of similarity cost function is proposed. During the depth estimation via optimization algorithms like Graph Cut similarity metric is constantly updated so that only non-occluded fragments in side views are considered. At each iteration of the algorithm non-oc...
متن کاملSolving Markov Random Fields with Spectral Relaxation
Markov Random Fields (MRFs) are used in a large array of computer vision applications. Finding the Maximum Aposteriori (MAP) solution of an MRF is in general intractable, and one has to resort to approximate solutions, such as Belief Propagation, Graph Cuts, or more recently, approaches based on quadratic programming. We propose a novel type of approximation, Spectral relaxation to Quadratic Pr...
متن کاملSolving Multilabel MRFs using Incremental α-Expansion on the GPUs
Many vision problems map to the minimization of an energy function over a discrete MRF. Fast performance is needed if the energy minimization is one step in a control loop. In this paper, we present the incremental α-expansion algorithm for high-performance multilabel MRF optimization on the GPU. Our algorithm utilizes the grid structure of the MRFs for good parallelism on the GPU. We improve t...
متن کاملBethe Bounds and Approximating the Global Optimum
Inference in general Markov random fields (MRFs) is NP-hard, though identifying the maximum a posteriori (MAP) configuration of pairwise MRFs with submodular cost functions is efficiently solvable using graph cuts. Marginal inference, however, even for this restricted class, is in #P. We prove new formulations of derivatives of the Bethe free energy, provide bounds on the derivatives and bracke...
متن کامل